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A membrane-bound ATPase from the archaebacterium

Halobacterium saccharovorum is inhibited by N-ethyl-

maleimide in a nucleotide-protectable manner (Stan-

Lotter et al., 1991, Arch. Biochem. Biophys. 284, 116-

1191. When the enzyme was incubated with N-

[14C]ethylmaleimide, the bulk of radioactivity was as-
sociated with the 87,000-Da subunit (subunit I). ATP,

ADP, or AMP reduced incorporation of the inhibitor. No

charge shift of subunit I was detected following labeling
with N-ethylmaleimide, indicating an electroneutral re-

action. The results are consistent with the selective mod-

ification of sulfhydryl groups in subunit I at or near the

catalytic site and are further evidence of a resemblance
between this archaebacterial ATPase and the vacuolar-

type ATeases. , 1992 Academic Press, Inc,

Amino acid sequences of the two major ATPase sub-

units from Sulfolobus acidocaldarius (1, 2), Methanosar-

cina barkeri (3), several vacuolar ATPases (V-type AT-

Pases) (4), and the ATP synthases iF-type ATPases),

which occur in mitochondrial, chloroplast, and eubacterial

membranes, suggest that archaebacterial ATPases are

more closely related to V-type than to F-type ATPases

(5). On the other hand, archaebacterial and F-type AT-

Pases are immunologically related (6, 7); the ATPase from

the archaebacterium Halobacterium saccharovorum is in-

hibited by DCCD :* and NBD-C1 under conditions which
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also affect F-type ATPase activity (8, 9); and the ATPase

from M. barkeri contains amino acid residues believed to

be essential for catalytic function of F-type ATPases (3).

These observations suggest that archaebacterial ATPases

are chimeric in the sense that they possess features of V-

type and F-type ATPases (9-11).

A distinguishing property between V- and F-type AT-

Pases is their sensitivity to the thiol reagent, NEM; unlike

F-type ATPases, V-type ATPases are inhibited by NEM

(12, 13). The ATPase from H. saccharovorum is also in-

hibited by NEM and the presence of nucleotides decreases

the extent of inhibition (9). In this Communication we

demonstrate that NEM is incorporated into subunit I,

that the conditions for modification are similar to those

which result in the inhibition of enzyme activity, and that

the reaction involves the specific modification of thiol

groups.

MATERIALS AND METHODS

The membrane ATPase from H. saccharot'orum (ATCC 29252) was

prepared as previously described (14, 151. The specific activities fo]lowing

purilication on DEAE-eellulose and sucrose gradients were 3.1 and 6.4
tamol PO4 min ' mg 1 protein, respectively. Modification o1' the enzyme
with NEM was carried out in 50 mM triethanolamine- HCI/4 M NaCI/

2 mM EDTA, pH 7.15, buffer (9). ATPase activity was determined in
the presence of 0.01% Triton X-165 with Mn ATP as substrate 191.

SDS gels were run according to the procedure of Laemmli (16L lsoelect ric
focusing was done in a two-dimensional system described previously
(171 with a concentration of 0.5% ampholytes (18t. Gels containing

isotopes were soaked in Amplify, dried under reduced pressure, and
exposed at 70°C to Kodak XAR 5 film. Densitometry of stained gels
or autoradiographs was performed with a Hoefer Model (IS 300 or LKB
Ultroscan XL laser densitometer. The amount of [14C]NEM associated

with protein bands was determined by integration of the area under the
peaks. Protein was determined by the method of Bradiord ( 191 with 7-
globulin as standard. Bio-Rad protein assay reagenl, "t-globulin, and
SDS were obtained from Bio-Rad Laboratories. ATP, ADP, AMP, and

NEM were from the Sigma Chemical Co. [z4C]NEM {specilic activity 7

mCi/mmol) and Amplify were from Amersham.
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FIG. 1. Time-dependent incorporation of I_4C]NEM into subunit I.
Halobacterial enzyme (DEAE fraction) was treated with 1 mM [14C]NEM
for 3 h (lane 2) and 6 h (lane 1). Following removal of excess reagent,

subunits were separated on an SDS gel. Acrylamide concentration was
12%. Gels were stained with Coomassie blue (A) or exposed to X-ray

film (B). The major subunits 1 and II are indicated, l,ane l, 26 #g; lane
2, 22 pg.

RESULTS

Figure 1 shows the results of an experiment in which

the ATPase from H. saceharovorura was incubated in the

presence of [_4C]NEM. The bulk of the radioactivity was

associated with subunit I (Mr 87,000) and, as was the case

with inhibition of hydrolytic activity (9), the amount in-

corporated increased with the time of incubation (Fig.

1B, lanes 1 and 2). Densitometric scans indicated that

the incorporation of [14C]NEM into subunit I was 28%

greater after 6 h than after 3 h. The radioactivity in sub-

unit I, again estimated by densitometric scanning (lane

1, Fig. 1B), was more than 75% of the total incorporated

NEM. Some radioactivity was present in subunit II (Mr

60,000) and in a faster migrating protein (Mr 49,000). The

amount of [_4C]NEM incorporated into subunit II or the

faster moving component did not increase with time, sug-

gesting that the site of NEM inhibition was subunit I.

The incorporation of [14C]NEM into subunit I was re-

duced, as was the inhibition, when the enzyme was prein-

cubated with nueleotides prior to treatment with NEM.

ADP and ATP (Fig. 2, lanes 3 and 4, respectively) were

the most effective, reducing the relative label by 62 and

65%, respectively, whereas AMP (Fig. 2, lane 2) was the

least effective, causing a reduction of about 42%. The hy-

drol_ic activities (as % of the uninhibited enzyme) as-

sociated with the samples used in Fig. 2 were 57% (lane

2, AMP); 80% (lane 3, ADP); 83% (lane 4, ATP); and

29% (lane 5, no nueleotides). The enzyme shown in Fig.

2 was purified on a sucrose gradient (20) which removed

a number of contaminating proteins. Thus, the extensive

time required to demonstrate inhibition by NEM did not

lead to any significant degradation of subunits I or II since

no additional components were observed (compare Fig.

2, lanes I and 5).

The prolonged incubation times and the near neutral

conditions employed to achieve maximum inhibition and
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FIG. 2. Eftect ofnucleotides on the incorporation of [_4C]NEM. Prior

to reaction with [_4C]NEM, the halobacterial enzyme (purified on a

sucrose gradient) was incubated for 25 min with 5 mM of the following:

AMP, lane 2; ADP, lane 3; ATP, lane 4; no nucleotide, lane 5. Following

reaction with NEM tot 5 h, the procedure was as described in the legend

to Fig. 1. (left and right) Coomassie-stained gels; (middle) gel exposed

to X-ray fihn. I,ane 1, untreated enzyme, 9.5 pg; lanes 2 5, approximately

9.,5 pg each.

incorporation of NEM raised the possibility that the in-

hibitor could have reacted with groups other than thiols,

most notably amino groups. A relatively simple experi-

ment based on the following considerations ruled out the

participation of amino groups. The reaction between

NEM and thiols is electroneutral, whereas a reaction be-

tween NEM and amino groups results in the appearance

of protein species with one additional net negative charge

per modified group. Such species are resolvable on iso-

electric focusing gels [see for example Ref. (21)]. The re-

sult of a typical experiment in which the enzyme was

subjected to isoelectric focusing following labeling with

[14C]NEM is shown in Fig. 3. Subunit I migrated as a

double band, indicating charge heterogeneity, as had pre-

viously been observed (18). However, no additional an-

odically migrating radioactive bands were detected (Fig.

3, lane 1) as would have been expected had a reaction

taken place between an amino group and NEM. We take

this as confirmation that the reaction between the ATPase

and NEM is electroneutral and therefore involves a thiol

group.

DISCUSSION

Although the _ and ¢4 subunits of F-type ATPases con-

tain cysteinyl residues (22), thiol groups are not involved
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FIG. 3. Isuelect ric tbcusing of sulmnit I. The enzyme was t reated with
114C]NEM. Subunit I was separated on an isoelectric focusing gel as

described in (20). The gel was stained with Coomassie blue (lanes 2 and
3) or exposed to X-ray film (lane 1). The approximate pH range is in-

dicated to the letL Lanes 1 and 2, 8 _g of subunit I from [14C]NEM-
treated enzyme; lane 3, 10 _g of sulmnit I from untreated enzyme.
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in catalysis. In the case of the ATPase from Escherichia

coil, either the subunits do not react with sulfhydryl re-

agents or,if they do, hydrolytic activity is marginally af-

fected (23). V-type ATPases are characteristically inhib-

ited by low concentrations of NEM (12, 131. The inhibitor

predominantly labels the largest subunit (subunit A) and

the inhibition is relieved by nucleotides. This has lead to

the suggestion that subunit A is the catalytic one and

thiols are associated with the catalytic site [for review

see (24) ].

The characteristics of the incorporation of NEM into

the ATPase from H. saccharovorum were similar to those

leading to the inhibition of enzyme activity [see Ref. (9)].

Both exhibited a marked time dependence and both pro-

cesses were antagonized by the presence of adenine nu-

cleotides. Protection by ATP and ADP was consistent

with the observation that the latter is a competitive in-

hibitor with respect to ATP (14). While AMP is neither

a substrate nor a product of ATP hydrolysis (14), it in-

hibited the halobacterial ATPase (Stan-Lotter and

Hochstein, unpublished). AMP also inhibits the V-type

ATPase from oat tonoplasts (25), which is another in-

dication of the close relationship between V-type APTase

and the halobacterial ATPase. The incorporation of NEM

into subunit I was electroneutral as would be predicted if

the inhibitor reacted with cysteinyl residues. Nonspecific

labeling (other than subunit I) was less than 25% of the

total NEM associated with the halobacterial enzyme. Our

results suggested that cysteinyl residues in subunit I,

which are readily accessible to modification by NEM, may

be located at or near the substrate binding site. Consistent

with this notion is the presence of a nucleotide binding

site, deduced from amino acid sequence data, in the largest

subunit from the ATPase from H. salinarium (26).

Nucleotide analogues bind to both of the major subunits

from the F-type ATPases (27) and the ATPase of S. aci-

docaldarius (101. NBD-CI, a nucleotide analogue, also in-

hibits the ATPase from H. saccharovorum in a nucleotide

protectable manner. In this case, the bulk of the NBD-

CI is associated with subunit I| even though the conditions

of inhibition are similar to those used to demonstrate

NEM inhibition (9). The inhibition of the halobacterial

ATPase by DCCD is accompanied by the binding of this

inhibitor to subunit II (8). The conditions are analogous

to those which result in the inhibition of F-type ATPase

activity where DCCD is bound to the _ subunit which

contains the catalytic site (28). Thus, it remains to be

established which of the halobacterial subunits contains

the catalytic site and, if both subunits do indeed possess

nucleotide binding sites, how such sites contribute toward

catalytic activity.

In summary, the effect of NEM on the halobacterial

ATPase with respect to the time dependence of inhibition,

the antagonistic action of adenine nucleotides, and the

site of inhibition indicates that thiol groups are essential

for enzyme activity and is a further confirmation that the

ATPase from H. saccharouorum possesses features which

are characteristic of V-type ATPases.
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